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Two-Sided Filters for Frame-Based Prediction

Sumam David and Bhaskar Ramamurthi, Member, IEEE

Abstract—A new linear prediction model, based on a two-sided pre-
dictor which predicts on the basis of past and future samples within a
frame is presented. The new linear prediction model may be applied
wherever frame-based prediction is employed. A stable synthesis pro-
cedure is derived by casting the prediction equation as a cyclic con-
volution in the time domain. When the filter order is the maximum
possible, the synthesis filter is shown to have a frequency response pro-
portional to the squared magnitude of the DFT of the frame. A sym-
metric two-sided predictor is described which has only half the number
of coefficients to be coded as compared to a one-sided predictor of the
same order. Two-sided prediction showed at least 5 dB improvement
in prediction gain over one-sided prediction in our simulations on
speech data. Whether this translates to coding gain will be known only
after further studies with CELP-type coders.

1. INTRODUCTION

NEW linear prediction model, called the two-side predic-

tion model (TSP), which predicts on the basis of past and
future samples within a frame, is proposed. Since the linear
prediction (LP) model [1] is often determined on a frame-by-
frame basis, as in speech, all the data samples in an entire frame
are available for analysis. Thus, a better estimate of a sample
is obtained if we predict based on both the past and future sam-
ples.

However, synthesis in the case of TSP is not as straightfor-
ward as in the case of one-sided prediction (OSP). For exam-
ple, in the autocorrelation method of determining the one-sided
predictor, the predictor is guaranteed to be minimum phase [2],
and hence the inverse filter for synthesis is stable. In the case
of TSP, the predictor can never be minimum phase as we will
see later. A synthesis procedure is derived in this paper where
the problem is overcome by casting the prediction equation as
a cyclic convolution rather than a linear one. This leads to a
poor prediction of the samples at the two ends of the frame.
Modifications which improve the end-sample predictions are
also discussed.

II. TWO-SIDED PREDICTION

Throughout this paper, a frame is of length N and the order
of prediction is 2p. An estimate of s, based on p past and p
future samples is given by

14

P
Sp = — 'Zl 8iS(n—iymodN — _Z‘ 8N —iS(n+iymodN- (1)
i= i=

This is equivalent to a cyclic convolution of s, with g,:

sy = - z
I<i=<p
N-p=isN-1

CiStn—tymoaws 0 =n=N-—1. (2)
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Thus, the p samples at the beginning of the frame are pre-
dicted not only on the basis of samples immediately succeeding
them but also those at the end of the frame. For example, the
first sample is predicted based on the p samples that follow it
as well as the p samples at the end of the frame. Thus the first
sample is predicted only using future samples. A similar situa-
tion obtains while predicting the last p samples of the frame.

The prediction error e, is B
Sy =S, + 2

1<is<p
N-p<i<N-1

€, = Sp — 8iS(n—iymodN- (3)

Defining g, = 1, we can express e, as a cyclic convolution:

e, =5,8g, O=n=<sN-1 (4)

The maximum order of prediction possible is N — 1. In this
case, each sample is predicted based on all the other samples in
the frame.

The optimum filter coefficients { g; } are found by minimiz-
ing the total squared error E,, with respect to the parameters.
Here E,, = I, (e,)’. The optimum predictor that minimizes
E,, is obtained by solving the set of 2p symmetric normal equa-
tions

r‘2p£2p =~ (5)

where the (i, k)th element of the 2p X 2p matrix I'y, is given
by

v(i, k) = % S(n—i)ymodNS(n —k)modN»

N-p<ik<sN-1 (6)

and gh, = (81, " * "+ & 8v—p> " * " &nv-1)- The column vector

Y2, is defined by y5, = (y(0, 1), ==+, ¥(0, p), v(0O, N —

p), -, v(0, N — 1)). The minimum mean-squared error
thus obtained is

% = 'S + g5, Y- (7)

The range of summation in (6) is of importance. We specify
two possible ranges of summation for z and obtain two methods
which are akin to the well-known autocorrelation and covari-
ance methods in one-sided prediction. Following tradition, we
dub the first as the autocorrelation method (TSP-A), wherein
the range 0 < n < N — 1 is used. In the covariance method
(TSP-C), the range usedisp < n < N —p — L.

In the case of TSP-A, v (i, k) = r(i, k), the cyclic autocor-
relation function, defined as

N—1
r(i, k) = Zo S(n—iymodNS(n —kymod N+ (8)
e

Correspondingly, we denote I'y, in this case by Ry, and ¥, by
r,,- It can be seen that r(i, k) = r(k, i) = r(i — k). Further,
the cyclic autocorrelation function is an even function, i.e., r(i)
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=r(—i) = r(N — i). Using this property, it is easily seen
that the existence of a unique solution to the normal equations
implies that g, = g5 _;, i.e., the predictor coefficients are sym-
metric. The 2p normal equations then simplify to a set of p
symmetric normal equations which are given by

(R,)” + RP)g, = —r, 9)

where R{" and R(? are p X p matrices whose elements are
given, respectively, by r, (i, k) = r(i — k) and ry(i, k) =
rii+k), l<ik=<p, g, =(g,: - > &), and ry, = (r(0,
1), -+, r(0,p)). The minimum mean-squared error obtained
is

E3, = s's + 2g,r,. (10)
P spip

Thus, for an analysis filter of length 2p we need solve only
p linear symmetric equations. A fast algorithm for the solution
of this system of equations is given in [3].

In the covariance method, TSP-C, v (i, k) is replaced by
@ (i, k) where ¢ (i, k) has the range of summation p=<n=<
N — p ~ 1. The element ¢ (i, k) is symmetric but not periodic
even, i.e., ¢(i, k) # ¢(N — i, N — k). Further, ¢(i, k) #+
¢ (i — k). Therefore in TSP-C, we must solve 2p linear sym-
metric equations to obtain the predictor coefficients, which are
asymmetric.

A. Discussion

The prediction of the first and the last p samples in the frame
involve samples which are at the opposite ends of the frame,
due to the end-around nature of the cyclic convolution. These
predictions are reflected in the normal equations by the presence
of the cyclic autocorrelation function r(i ), in contrast to the
linear autocorrelation function found in the one-sided case. The
expression for r(i) is given by LN/ SuS(n—iymean Where we
see that, apart from products of the type s,s,_;,i < n < N —
1, products such as s,y + , _; involving the end samples are also
involved. If N is large and i is small, these ‘‘spurious’’ corre-
lations between end samples do not affect the estimate of r(i)
significantly. Thus the predictor is essentially optimized for
predicting all except the first and last p samples.

In the covariance method, the filter coefficients { g; } are such
as to minimize the error in the rangep < n < N — p — 1 and
hence no end-around effects are present. In this method, over-
lapped data frames with p samples overlap at each end are
formed. Since the error is minimized only for the samples of
interest, namely, p < n < N — p — 1, this method gives the
best prediction gain. However, its computational complexity is
the highest, as we have to solve twice the number of equations.
Further, in a coding application, only half the number of pre-
dictor coefficients need be coded when the autocorrelation
method is used. Due to these inherent advantages in the auto-
correlation method, it is of interest to modify the autocorrela-
tion method to reduce the effects of poor prediction of the end
samples.

One approach is to taper the frames at the ends and overlap
them (TSP-AT). For a predictor order of 2p, the p data samples
at both the frame ends are tapered and the frames overlapped.
The tapered sequence is given by

Sh=5W, O0=s=ns<sN-1 (11)
where
n/(p —1), for0=snsp-1
w, =<1, forpsn=N-p-1
(N-n-1)/(p—1), forN—p<sn=N-1.
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This is equivalent to segmenting the signal using an overlap-
ping trapezoidal window. Tapering decreases the effect of the
spurious end-around correlations on the estimates of r(i ). The
prediction of the samples improves as one moves inwards from
the ends of the frame. Further, when the tapered portions of the
predicted frames are overlapped and added, the poorly pre-
dicted samples are weighted less than the better-predicted ones.

III. SYNTHESIS MODEL

If the analysis and the synthesis are in the form of a linear
convolution, and the analysis filter is symmetric, the causal in-
verse filter is always unstable. This is because a symmetric two-
sided sequence will always have zeros outside the unit circle.
However, by casting the analysis in the form of a cyclic con-
volution, we are able to obtain an **inverse filter’’ for synthesis
in the two-sided case, also in the form of cyclic convolution.

The synthesis model is described as the cyclic convolution
between the synthesis filter 4,, and the prediction residual e,
to obtain the original frame s,

s, = e, € h,

(12)
In the frequency domain the synthesis can be expressed as
S(k) = E(k)H(k), O=<k<N-1 (13)

where S(k), E(k), and H(k) are the N-point DFT’s of s,, e,
and h,, respectively. The analysis model of (4) can be ex-
pressed in the frequency domain as

E(k) = S(k)G(k), O0=<k=<N-1 (14)

where G(k) is the N-point DFT of g,. From (13) and (14),
assuming that G(k) # O for any k, we get H(k) = 1/G(k).
In the autocorrelation method of solution, g, is symmetric and
real which implies that G(k), H(k), and h, are all symmetric
and real.

A. Existence of Synthesis Filter

In the Appendix, we obtain the following results for TSP-A
and TSP-AT that have a bearing on when G (k) becomes zero
for some k. If any S(k) is zero, an optimum two-sided predictor
can be found which predicts s, exactly. Further, if 2p = N —
1, (for this case N must be odd) and S(k) # O for all k, then
G (k) for the optimum predictor is nonzero for all k. When 2p
< N — 1, it is possible for G(k) to be equal to zero for some
k. In such a case, one solution to the synthesis problem is to
vary the order of prediction until G(k) # O for all k. Alterna-
tively, if G(kg) = G(N — k) = 0, set G(ky) = G(N — k)
= ¢, where ¢ is a small nonzero value. Each such replacement
changes the mean-squared error by a small amount 2/N
€?|S(ko)|*. In all the frames analysed in our simulations using
the different methods, for 2p varying between 2 and 16, we
never encountered a situation where G (k) was zero. The lowest
value of G(k) observed was of the order of 1078,

B. Relationship to DFT of the Frame
For the full-order predictor (2p = N — 1), from (A2) we get

H(k) = 1/G(k) = const. |S(k)|". (15)

This implies that the synthesis filter has a frequency response
proportional to the squared-magnitude of the DFT of the frame.
This has been verified in our simulations on speech data. If this
synthesis filter is excited by a frame consisting of a unit sample
(hence U(k) = 1, Vk), the synthesized output is proportional
to the cyclic autocorrelation of the input process.
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The infinite-order predictor in OSP, A(z), is proportional to
the whitening filter for the frame. The squared magnitude of the
frequency response of the corresponding synthesis filter 1/4(z)
is proportional to the power spectral density (psd) of the input
process. Thus when this synthesis filter is excited by white noise
(psd = 1), the psd of the output is proportional to the psd of
the original process. The results in TSP are similar, except for
the fact that in TSP the filter is of finite order N — 1 while in
OSP it is of infinite order. Moreover, in TSP we are dealing
with a deterministic frame, whereas in OSP, the theory is de-
veloped for a random process.

IV. SIMULATION RESULTS

The proposed two-sided predictor was tested on speech data.
Speech sampled at 8 kHz, segmented into frames of 128 sam-
ples (N = 128), was used in both TSP and OSP, with order of
prediction varying in the range 1 to 16. Four sentences each of
male and female voices constituted the data set.

A. Order of Predictor

The order of prediction required was decided by its value at
which the average normalized mean-squared prediction error in
decibels, V3, = 1 /M I!L, 10 log (E3,/r(0));, (averaged over
the entire data set of M frames), flattens off. Fig. 1 shows the
variation of V', with order of prediction 2p, for two-sided pre-
diction using the TSP-A, TSP-AT, and TSP-C. It can be seen
from Fig. 1 that the normalized mean-squared prediction error
flattens off for 2p > 8 in all the methods. We emphasize again
that an eighth-order symmetric TSP has only 4 arbitrary coef-
ficients compared to 8 in OSP.

In OSP, an order of prediction between 8 and 10 is consid-
ered to be sufficient for speech sampled at 8 kHz [1]. It was
found that in over 98 % of the frames, TSP of order 8 performed
better than OSP of order 8 in all the above methods.

It can be observed from Fig. 1 that the covariance method
achieves the highest prediction gain irrespective of predictor or-
der. However, more coefficients have to be coded in this case
and the computational complexity is higher than with the
autocorrelation method. TSP-AT performs better than TSP-A
as the effect of the end-around predictions decreases with ta-
pering. The difference in prediction gain between TSP-AT and
TSP-C was around 0.25-2 dB (1 dB in the case of the eighth-
order predictor). Thus we can see that TSP-AT is a good choice
as a compromise between prediction gain and computational
complexity.

B. Comparison of Mean-Squared Prediction Error in TSP
and OSP

Two variants were compared for the autocorrelation method:
a) TSP-A, OSP-A where the speech is segmented into frames
with 128 data samples and b) TSP-AT, OSP-AT where the data
samples are windowed by the 6.25% overlapping trapezoidal
window. In the covariance method the mean-squared prediction
error is minimized over 112 data samples in both TSP-C and
OSP-C, for predictor orders between 1 and 16. The frames
ovetlap to the extent of 8 samples at either end, giving a total
frame size of 128.

Let us define o, as the difference in decibels between the
average normalized mean-squared prediction errors in TSP and
OSP, i.e., ay, = Vi, — V5 (dB), s =1/M ¥, 10 log
(D$,/r(0));, D3, is the minimum prediction error in OSP),

o TSP-A
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Fig. 1. Variation of average normalized mean-squared prediction error
VEP with order of prediction 2p, for two-sided prediction in autocorrela-
tion and covariance methods.
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Fig. 2. Variation of the difference (decibels) in average normalized mean-
squared prediction error between TSP and OSP, a5, in autocorrelation and
covariance methods.

is a measure of the relative performance of the two prediction
models. In Fig. 2, the variation of o, with predictor order is
plotted for the two autocorrelation methods and the covariance
method. It can be seen from Fig. 2 that an eighth-order TSP
gave more than 5 dB improvement compared to OSP in all the
methods. Both TSP-AT and TSP-C showed almost the same
degree of improvement in prediction gain over OSP-AT and
OSP-C, respectively. The worst relative performance is seen in
the case of TSP-A and this is due to the end-around predictor
which are more pronounced here than in TSP-AT.

In the above performance comparisons, the errors in OSP in
the range Nto N + 2p — 1 were also included in the evaluation.
When the same comparisons were made taking into account only
the errors in the data samples a similar performance was seen.

The percentage of frames in which TSP performed better than
OSP as indicated by o, was always above 87%, and the per-
centage of such frames was 100% in our simulations when the
predictor order was greater than 12.

The proposed TSP model is seen to predict much better than
the conventional OSP model as can be seen from Fig. 2. An
eighth-order TSP is sufficient for speech modelling, providing
a prediction gain of around 5 dB over OSP and it requires only
half the number of filter coefficients to be coded when compared
to eighth-order OSP.

It is instructive to compare the prediction residuals in the case
of TSP and OSP filters. The tapered autocorrelation method was
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Fig. 3. Prediction residual of the eighth-order‘ﬁlter (a) TSP and (b) OSP,
for the speech frames of Fig. 5(a).

used to find the prediction filter for the two adjacent frames of
speech shown in Fig. 5(a). The residuals obtained for eighth-
order TSP (Fig. 3(a)) and OSP (Fig. 3(b)) filters for these two
frames are shown in Fig. 3. The TSP residual does not show
any characteristics significantly different from that of OSP re-
sidual except that it has lower energy.

The synthesis filter obtained in the autocorrelation method is
symmetric. The synthesis-filter’s impulse response in the one-
sided case typically decays rapidly. In contrast, the synthesis
filter response in TSP typically has significant values over the
whole frame. The unit-sample responses of the eighth-order TSP
and OSP synthesis filters for the first frame in Fig. 5(a) are
shown in Figs. 4(a) and (b), respectively. The magnitude-spec-
trum of these synthesis filters are also shown in Fig. 5(b) along
with the magnitude spectrum of the first speech frame. A no-
ticeable feature of the TSP spectrum is that it is not accurate for
the higher frequencies where the speech-spectral level is very
low.

V. SYMMETRIC FILTERS IN SPEECH SYNTHESIS

The prediction residual, when used as the excitation with the
appropriate synthesis filter, gives as output the original speech
itself without any distortion in both TSP and OSP. To achieve
low bit rates, the excitation is coded, as in CELP [4] or multi-
pulse excited LPC (MPELPC) [5]. It is not evident whether in
such schemes, if OSP is replaced with TSP and the coder is
suitably optimized, if the remarkably high improvement in pre-
diction gain with TSP will directly translate to a high coding
gain.

A conclusive test of the applicability of TSP in speech coding
would be its performance in CELP coders. This is, however,
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synthesis filters shown in Fig. 4 and magnitude spectrum of the first speech
frame of Fig. 5(a).
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not straightforward as CELP has to be modeled using cyclic
convolutions. It is easy to implement TSP synthesis using DFT.
A multiband excited vocoder [6] where the short-term spectrum
of speech is modeled as a product of the speech spectral enve-
lope and an excitation spectrum in the frequency domain is cur-
rently being studied. It employs a speech production model
based on the TSP filter to reconstruct the spectral envelope.

Another approach is to use variable-sized pitch synchronous
frames. In such a case, samples one pitch-period away can be
used along with the adjacent samples for two-sided prediction.
Further, the problem of end-around predictions is eliminated
here. However, variable frame-size coders usually imply vari-
able bit-rate and variable coding delay.

A quick, but less informative, alternative to study the per-
formance of TSP in speech coders is the MPELPC scheme
(without the long-term predictor). The OSP filter was replaced
by the TSP filter, and the analysis-by-synthesis procedure mod-
ified slightly to find the excitation. The tapered autocorrelation
method was employed to find the prediction filter as it gives
good performance with low computational complexity.

From the results obtained, it was clear that no catastrophic
problems were associated with TSP synthesis when the excita-
tion differed from the residual. Further, there was a significant
improvement of nearly 3 dB in segmental SNR when TSP was
used instead of OSP in about 50% of the frames. The cyclic
nature of the synthesis in the two-sided case, and the fact that
the unit-sample response of the TSP synthesis filter has signif-
icant values over the entire frame, make the sequential pulse
optimization technique of [5] less effective in the case of TSP.
Any one excitation pulse significantly affects all the synthesized
samples in the frame. Therefore, it is difficult to interpret
whether the poor performance in the remaining frames is due to
bad choice of excitation or to the synthesis filter.

TSP can be profitably employed in MPELPC coders in the
following manner. Both TSP and OSP synthesis filters can be
used for each frame and the one that performs better can be
used. This improves the overall performance of the MPELPC
scheme while at the same time keeping the bit rate unchanged.
The type of the predictor can easily be indicated to the receiver
by the addition of an extra bit while encoding.

In the autocorrelation method for TSP, the filter is symmet-
ric. A lattice-form realization, with the inherently low sensitiv-
ity of the reflection coefficients, can be found for the causal half
of the symmetric response, which is sufficient to recover the
two-sided response at the decoder.

APPENDIX

We present here some results pertaining to the characteristics
of the TSP analysis filter when the autocorrelation method is
used.

A. Result 1

If any S(k) is zero, then a two-sided predictor can be found
that predicts exactly.

The mean-squared prediction error is E,, = 1/N Voo
| S(k)|* G?(k). Therefore, if S(kg) = S(N — ko) = 0, then
with G(k) = G(N — ko) = N/2, the signal can be completely
predicted giving zero prediction error. Note that this choice of
G (k) satisfies the constraint go = 1.

B. Result 2

When the predictor order is N — 1, if S(k) # 0 for all £,
then G(k) of the optimum predictor is nonzero for all .

In the frequency domain E (k) = G(k)S(k). Since g, is sym-
metric, and G (k) is real, the mean-squared prediction error E,,
= 1/NZ¥2¢ |S(k)|* G*(k). With two-sided predictor order
equal to N — 1, we can obtain the optimum predictor {G(k)}
by minimizing Ey_, with respect to G(i),0 < i <N — 1,
subject to the constraint go = 1/N E¥Zg G(k) = 1. The La-

grange auxiliary function to be minimized is therefore

f(G) = % P2} |S(k) " G* (k) — XG ZO G(k) — 1>-

(A1)
Thus we obtain
o = 1[5 S Uswl/ison| @)
and
B, = 1/(%1 z 1/|S(k)|2>. (A3)

Thus when the predictor orderis N — 1, i.e., if the prediction
is based on all the remaining samples in the frame, and if S(k)
+ 0 for all k, then G(k) of the optimum predictor is nonzero
for all k. Further, the optimum value of E3_, is also nonzero.
This implies that any lower order predictor will also have non-
zero prediction error. In the one-sided case, too, the mean-
squared prediction error cannot become zero if S(w) # 0 for
all w.

C. Result 3

For a TSP filter of order 2p, where 2p < N — 1, G(k) may
become zero for some value of k even if S(k) # O for all k
(implying that the minimum value of mean-squared prediction
error is nonzero).

As an example, consider the 5-sample frame s(0) = 0.78987,
s(1) = 0.38987, s(2) = 0.18987, s(3) = 0.18987, and s(4)
= 0.38987. In this case, S(0) = 1.949, S(1) = S(4) =
0.7236, and S(2) = S(3) = 0.2763. The cyclic autocorrela-
tion is given by r(0) = 1, r(1) = r(4) = 0.8 and r(2) =
r(3) = 0.6. With a TSP of order 2, g, = r(1)/r(0) + r(2)
= —0.5, and ES > 0 but G(0) = 0. This is in contrast to the
one-sided case, where the zeros of the prediction filter will lie
on the unit circle if and only if the mean-squared prediction
error goes to zero [1].
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