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Abstract-In this paper, we present a novel method for the 

acquisition and compression of hyperspectral images based on 
two concepts - distributed source coding and compressive 
sensing. Compressive sensing (CS) is a signal acquisition method 
that samples at sub Nyquist rates which is possible for signals 

that are sparse in some transform domain. Distributed source 
coding (DSC) is a method to encode correlated sources separately 
and decode them together in an attempt to shift complexity from 

the encoder to the decoder. Distributed compressive sensing 

(DCS) is a new framework suggested for jointly sparse signals 
which we apply to the correlated bands of hyperspectral images. 
We compressively sense each band of the hyperspectral image 

individually and can then recover the bands separately or using a 
joint recovery method. We use the Orthogonal Matching Pursuit 

(OMP) for individual recovery and Simultaneous Orthogonal 
Matching Pursuit (SOMP) for joint decoding and compare the 
two methods. The latter is shown to perform consistently better 
showing that the Distributed Compressive Sensing method that 

exploits the joint sparsity of the hyperspectral image is much 

better than individual recovery. 

Keywords-Hyperspectral images, distributed source coding, 
compressive sensing, distributed compressive sensing, orthogonal 
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I. INTRODUCTION 

Hyperspectral imaging collects information across different 
bands in the electromagnetic spectrum that can be used for 
identification of different materials and features on the earth 
surface. However, the amount of data collected by 
hyperspectral sensors is very huge and hence compression is a 
must. Also, there is a need to keep the processing time onboard 
the aerial platform as low as possible so as to enable fast 
collection and transmission of data. The on board acquisition 
system and consequent encoder must be kept as simple as 
possible due to constraints on memory and size imposed by the 
nature of the aerial platform. 

Conventional imaging consists of 2 stages - first huge 
amounts of data are collected by a large number of sensors and 
second, the data is compressed without substantially affecting 
the quality. Compressive sensing/sampling (CS) uses a 
different methodology by only acquiring some samples of the 
entire data thus removing the need for a separate compression 
step. This is possible due to the fact that the original data is 
usually sparse in some domain (e.g. DCT) and even in 
conventional compression most coefficients in that domain are 
insignificant. So for images (hyperspectral or otherwise), 

application of compressive sampling not only eliminates the 
separate compression step, it also helps in reducing the number 
of sensors needed. Thus, the bands of the hyperspectral image 
can be compressively sensed one at a time and one of many 
possible methods of reconstruction can be used to recover them 
individually. 

The high correlation between the bands of hyperspectral 
images can also be exploited using the concept of distributed 
source coding (DSC). The bands can be encoded separately and 
then jointly decoded at a ground station. Thus if each band is 
compressively sensed and the bands are recovered together, the 
system thus developed is a form of distributed compressive 
sensing (DCS). 

The paper is organized as follows. Section II gives a brief 
description of Distributed Source Coding (DSC). Section III 
deals with the theoretical aspects of Compressive Sensing 
(CS). Section IV describes the procedure of Orthogonal 
Matching Pursuit (OMP) which is a specific method of 
reconstruction used in CS. Section V briefly explains the 
paradigm of Distributed Compressive Sensing (DCS). 
Simultaneous Orthogonal Matching Pursuit (SOMP) which is 
an example of a reconstruction method in DCS is explained in 
Section VI. The experimental results obtained by comparing 
OMP and SOMP are given in Section VII. 

II. DISTRIBUTED SOURCE CODING 

Distributed source coding considers a situation in which two or 
more statistically dependent data sources must be encoded. In 
conventional compression, a single joint encoder exploits the 
statistical dependence of the source signals. However, efficient 
compression can also be achieved by exploiting source 
statistics at the decoder only. This way, the complexity is 
shifted from the encoder to the decoder. 

Consider a communication system with two correlated 
signals that are encoded independently i.e. are distributed. 
Assume the receiver, on the other hand, can see both encoded 
signals and can perform joint decoding. Following the standard 
encoding paradigm, each source can be compressed lossless, 
with a total rate no less than the sum of the two source 
entropies. This is clearly less efficient than an encoder that 
jointly compresses the two sources where a bit rate equal to the 
joint entropy of the sources could be used. The surprising result 
of DSC theory as given by David Slepian and Jack Keil Wolf 
[1] is that, under certain assumptions, the same result can be 
achieved by using two separate encoders, provided that the two 
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sources are decoded by a joint decoder. This bound was 
extended to cover more than two correlated sources by Thomas 
M. Cover [2]. With regard to lossy coding of joint Gaussian 
sources,similar results were obtained by Aaron D. Wyner and 
Jacob Ziv [3]. 

The concept has a strong potential for remote sensing 
image compression as we can exploit the correlation between 
two (or more) bands of a mUltispectral or hyperspectral image 
to achieve lower encoder complexity by avoiding explicit 
decorrelation of the bands. Current work on the application of 
DSC to hyperspectral image compression has been presented 
clearly by Magli et al.[4]. 

III. CO MPRESSIVE SENSING 

Shannon-Nyquist's sampling theorem states that the 
sampling frequency of a signal must be at least two times the 
highest frequency present in the signal to prevent information 
loss through aliasing. CS is a new sampling theory that states 
that compressible signals can be reconstructed using far fewer 
samples than Shannon suggests. CS was first put forth by 
Emmanuel J.Candes [5] in 2004 while working on a problem in 
magnetic resonance imaging who discovered that a test image 
could be reconstructed exactly even with data deemed 
insufficient by the Shannon-Nyquist criterion. 

Compressive Sampling can be explained as given in [6] as 
follows. Consider a real valued, discrete signal x, which can 
be viewed as an N x 1 column vector in RN with elements 
x[n], n = 1, . .  , N. Suppose any signal in RN can be represented 
in terms of a basis of N x 1 vectors {If/i};=IN. The signal x can 
be expressed as 

(1) 

where s is the N x 1 column vector of weighting coefficients. 
Clearly, x and s are equivalent representations of the signal, 
with x in the time or space domain and s in the 'II domain. x is 
K-sparse if it is a linear combination of only K basis vectors; 
in other words only K of the Si coefficients in equation (1) are 
nonzero and the remaining are zero or small enough to be 
approximated to zero. x is said to be compressible if K <<N. 

Consider a linear measurement process that computes 
M<N inner products between x and a collection of vectors 

{cJ)j }f=l' Arrange the measurements Yi in an M x 1 vector y 

and the measurement vectors cJ)J as rows in an M x N matrix 

«D. Then, by substituting x from equation (1), y can be written 
as 

y = cJ)x = cJ)1/Is = as (2) 

where 0= <D 1/1 is an M x N matrix. 

The measurement process is not adaptive, meaning that «D 

is fixed and does not depend on the signal x. The problem 
consists of designing a stable measurement matrix <D so that 
no important information is damaged by the dimensionality 
reduction and a reconstruction algorithm to recover x from 
only M measurements of y is possible. The choice of <D and 1/1 
is critical for CS. In general, we can design a stable 
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measurement matrix based on certain properties (like 
Restricted Isometry Property) as stated in [6]. 

The reconstruction of x or equivalently, s from vector y of 
M samples is not trivial. The exact solution is NP-hard and 
consists of finding the minimum Lo norm (the number of 
nonzero elements). However, excellent approximation can be 
obtained via the Ll norm minimization given by: 

s = argminlls'lil such that 4>1/Is' = y (3) 

where s is the reconstructed s. 

This convex optimization problem, namely, basis pursuit 
can be solved using a linear program algorithm of O(N3) 
complexity [7]. Due to complexity and low speed of linear 
programming algorithms, faster solutions were proposed at the 
expense of slightly more measurements, such as matching 
pursuit, tree matching pursuit, orthogonal matching pursuit 
(OMP) [8], and TwIST algorithm [9]. 

There has been very limited research on the applications of 
compressive sensing theories for remote sensing and multi­
spectral images. Jianwei Ma [10] proposed two possible 
systems, SPMT (single-pixel but multi-time) and MPST 
(multi-pixel but single-time) for different applications of CS in 
aerospace remote sensing. As suggested in [10] and [11], we 
also have employed a noiselet transform [12] as the 
measurement matrix due to the fact that a fast transform is 
available allowing low computational cost. The sparse domain 
chosen is the DCT domain. 

IV. ORTHOGONAL M ATCHING PURSUIT 

The OMP Algorithm [8] is a sparse approximation 
algorithm. From equation (2) we have y = 0s. Y is a linear 
combination of m columns from 0. Denote the columns of 0 
by 'Ph"" 'PN' 

To identify s, we need to determine which columns of 0 
participate in the measurement vector y. The idea behind the 
algorithm is to pick columns in a greedy fashion. In each 
iteration, we choose the column of 0 that is most strongly 
correlated with the remaining part ofy. Then we subtract off 
its contribution to y and iterate on the residual. The basic 
algorithm is described below as given in [8]. The outputs are 
s which is the estimate for the ideal signal and set AM 

containing M elements from 1,.,N. 

Procedure: 

1. Initialize the residual ro = y, the index set Ao = (/), and the 

iteration counter t = 1. 

2. 

3. 

Find index At that solves the optimization problem 

At = argmaxj=1,2 ... ,N I (rt-lo (fJj>1 (4) 

If the maximum occurs for multiple indices, the tie is 

broken deterministically. 



4. Augment the index set At = At-1 U{A.t} and the matrix 

of chosen atoms 

(5) 

By convention, 80 is taken to be an empty matrix. 

5. Solve a least-squares problem to obtain a new signal 

estimate 

(6) 

6. Calculate the new approximation of the data and the new 

residual 

at = 8tXt 
Tt = Y - at 

7. Increment t, and return to Step 2 if t < m. 

(7) 
(8) 

8. The estimate s for the ideal signal has nonzero indices at 
the components listed in Am. The value of the estimate s 
in component A.jequals the Jh component of xt. 

V. DISTRIBUTED CO MPRESSIVE SENSING 

Distributed Compressive Sensing (DCS) is a combination 
of DSC and CS and was put forward by Baron et.al. [13]. In a 
typical DCS scenario, a number of sensors measure signals that 
are each individually sparse in some basis and also correlated 
from sensor to sensor. The theory rests on a concept termed 
joint sparsity- the sparsity of the entire signal space. There are 
3 models of joint sparsity suggested in [13] - sparse common 
component with innovations, common sparse support and non­
sparse common component with sparse innovations. An 
example of its implementation is given in [14] where the 
concept of DCS is applied to colour images. 

The common sparse support model seems to be the easiest 
that can be applied in our case since the model assumes a zero 
common component (and hence we need not fmd a common 
component across the bands of the hyperspectral image). In this 
model, the innovations remain sparse but the common 
component is equal to zero. Also, the innovations share the 
same sparse support which means that the index of the 
coefficients are the same for all signals but the value of the 
coefficient themselves vary. 

VI. SIMU LTANEOUS ORTHOGON AL MATCHING PURSUIT 

To recover correlated signals, a greedy pursuit method, 
Simultaneous Orthogonal Matching Pursuit(SOMP), has been 
proposed in [15]. The algorithm is very similar to the OMP 
algorithm described before but with a few minor changes. 

Let there be B compressively sampled signals y., Y2, .... yR. 
The second step of the OMP algorithm is modified so as to 
find the index A. t that solves the easy optimization problem as 

maxwE,{l L�=ll(Rk,t-1> (j)j>1 (9) 

where Rk,t-l is the residual of the kth compressively sampled 

signal. The rest of the procedure remains the same with each 
of S., S2, ... ,SR being reconstructed. This procedure reduces to 
standard Orthogonal Matching Pursuit [8] when B = 1. The 
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idea behind maximizing the sum of absolute correlations is 
that we wish to find that column that contributes the most 
energy to as many of the input signals as possible. 

The implementation of the above is done over a small 
group of consecutive bands and not all the bands taken 
together (since the latter would require large memory and take 
a lot of time). 

VII. EX PERIMENTAL RESULTS 

Experiments were conducted to compare the relative 
performance of compressive sensing using OMP and 
distributed compressive sensing using SOMP. All experiments 
were performed on Airborne VisuaVInfraRed Imaging 
Spectrometer (A VIRIS) images which contain data of 224 
contiguous spectral channels (bands) with wavelengths from 
400 to 2500 nanometres. Three standard data products 
available for download from NASA's AVIRIS website -
Cuprite, Lunar lake and Jasper Ridge have been used [16]. All 
the proposed algorithms have been applied on the radiance data 
of the three data sets. 

The A VIRIS images were cropped to size 256x256. All 
compressive sensing was done using 12.5% measurements (i.e. 
1I8th of the original number of pixels = 8196 or a compression 
ratio of 0.125). Reconstructions are on compressively sensed 
images taking DCT as the sparse domain and random noise1et 
transform as the measurement matrix. Initially, the programs 
were run on the first 5 bands of the 3 A VIRIS images and this 
was extended to the first 10 bands and results were found to be 
consistent. The results in terms of average MSE and SNR over 
the 10 bands of the images reconstructed by OMP and SOMP 
are given in Table I. Figures 1, 2 and 3 shows the SNR 
comparison for the 3 images by the two methods and Figure 4 
shows the time for reconstruction using SOMP and OMP for 
the three images. 

Algorithms were implemented in MATLAB version 7.0.1 
on a workstation with Intel Dual Core 1.73 Ghz processor 
using the ll-magic toolbox [7] and the Sparsify toolbox [17], 
[18]. The SOMP algorithm was developed from the OMP 
algorithm in the Sparsify toolbox which is based on QR 
factorisation [17], [19]. The SNR was computed using the 
following formula 

SNR = 10 I (L�lLf=1(I(i,j)}2) og 
M.N.MSE 

(9) 

where the image is of size MxN and I(ij) is the brightness 
value of the pixel in ith row and jthco1umn. Reconstruction time 
was estimated using the etime function available in MATLAB. 

As is evident from Table I and Figures 1, 2 and 3, 
performance of SOMP is much better than OMP in terms of 
MSE and SNR with an improvement of 2723.89 in MSE and 
0.961dB in SNR on average. Also the time for reconstruction 
of the 10 bands together using SOMP is much lesser than that 
required to reconstruct all 10 bands individually by OMP as 
shown in Figure 4. Thus the usage of Distributed Source 
Coding in tandem with Compressive Sensing methods does 
improve performance as well as reconstruction time. 



T ABLE 1. MSE AND SNR FOR RECONSTRUCTION BY O MP AND SOMP 

Reconstruction by Reconstruction by 
AVIRIS OMP (average over SOMP (average over 

image all bands) all bands) 
name SNR SNR 

mse 
(in db) 

mse (in dB) 

Cuprite 27055.85 26.8364 25416.45 27.7181 

Jasper 7635.71 26.6065 6218.68 27.8054 
Lunar 
Lake 80208.29 24.5171 75093.06 25.3197 

Average 38299.95 25.987 35576.06 26.948 
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Figure 1. Comparison of SNR ofOMP reconstructed and SOMP reconstructed 
bands of the Cuprite image for the first 10 bands 
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Figure 2. Comparison of SNR ofOMP reconstructed and SOMP reconstructed 
bands of the Jasper image for the first 10 bands 
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Figure 3. Comparison of SNR ofOMP reconstructed and SOMP reconstructed 
bands of the Lunar Lake image for the first 10 bands 
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Figure 4. Comparison of the reconstruction time for first 10 bands using OMP 
and SOMP for the 3 hyperspectral images - Cuprite, Jasper and Lunar lake 

VIII. CONCLUSIONS AND FUTURE WOR K  

Performance of SOMP is much better than OMP both in 
terms of quality of reconstructed image and time for 
reconstruction. This shows that distributed compressive 
sensing techniques can indeed improve on compressive sensing 
methods. Thus, jointly reconstructing small groups of 
consecutive bands using some recovery method like SOMP is 
better than individual recovery. 

As far as compressive sensing is concerned, there has been 
little emphasis on hyperspectral images thus far, showing the 
need for more research work on them. While we implemented 
one method of compressive sensing and reconstruction on 
hyperspectral images, remaining methods found in literature 
can also be implemented to choose the most appropriate one. 
This could involve variation of the measurement matrix, the 
sparse domain and the reconstruction method to fmd which 
would give better performance. A hardware framework of how 
the sensors could be adapted for compressive sensing of 
hyperspectral images will also need to be designed and 
specified. 
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