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Abstract—The separation of the fundamental from a distorted
waveform is an important component in the implementation of
a custom power device. A novel scheme for a vector-locked loop
(VLL) for synchronous extraction of harmonics/fundamental in
a distorted periodic waveform is described here. An intuitive,
though approximate, explanation is provided for the operation
of the algorithm, focusing on the locking process and the
filtering capability. Performance aspects are analysed and an
approximate linear time-invariant model is presented to facilitate
in the design. Moreover, a means for choosing design parameters
to achieve the optimum performance is provided. Main features
of the proposed VLL are its simplicity, excellent insensitivity
to harmonics, noise rejection, availability of both fundamental
and harmonics without additional processing, and the speed of
operation. The claims are verified through extensive simulation
studies in MATLAB®/Simulink®.

Keywords—Vector-locked loop, amplitude-locking,
locking, harmonics extraction, amplitude demodulation
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I. NOMENCLATURE

x;(t)  Instantaneous value of input signal.

Ci(t) Instantaneous amplitude of k" harmonic in z;.

Wo Frequency of fundamental component in ;.

o Phase shift (¢, >0 = lead) of k" harmonic in z;.

zo(t) Instantaneous value of output signal.

ap(t) Instantaneous amplitude of z,.

Ay(t) dc component in ag.

2(t) Instantaneous value of error signal.

Xg(t) dc component in x .

By Amplitude of phase-locked loop (PLL) output.

Wy, Natural frequency of the second-order low-pass
filter.

Q Quality factor of the second-order low-pass filter.

G Integrator gain.

II. INTRODUCTION

The extraction of harmonics or the fundamental compo-
nents of voltages and/or currents is one of the main parts in
the implementation of custom power devices.The techniques
available can be broadly classified into single-phase and three-
phase. They can also be classified into open-loop techniques
and closed-loop techniques. A comparative evaluation of some
of these methods may be found in [1] and the importance and
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applications of proper extraction may be found in [2]. The
closed-loop techniques have the distinct advantage of being
able to stay synchronised (zero-deviation, amplitude/phase-
locked, to be more precise) to the input, which is very
important in all applications connected to the grid. Extracting
the fundamental/harmonics in a single-phase signal in a closed-
loop scheme is the main focus of this paper. The proposed
scheme falls into the class of closed-loop techniques presented
in [3]-[7].

Amplitude locking has been in use in the communication
area for the purpose of amplitude modulation/demodulation. A
vector-locked loop was presented in a patent by DaSilva [6]
which uses peak-detection in the magnitude detection stage.
An amplitude-locked loop was presented in another patent by
Pettigrew [8]. Both the aforementioned schemes assume the
input to be a sinusoid and hence can not be used for distorted
waveforms.

In the area of synchronised filtering the scheme presented
in 1995 by Luo, et. al, [4] has the desirable feature of
staying locked to the PLL reference and is very simple to
understand and implement. However its settling time is a
function of the integrator gain but an increase in the gain, to
improve dynamic performance, results in increased distortion
in the filtered output. In [3] Moir has presented an analysis
of the amplitude servo by Pettigrew [8] for the purpose of
amplitude demodulation. This has features similar to those
of the scheme mentioned above. A vector-locked loop for
synchronous extraction of harmonics was presented for the
first time in 2002 by M. Karimi-Ghartemani, et al. [5]. The
performance is similar to that of the scheme presented by
Luo, et al., since it uses the same structure in the amplitude
extraction section of the algorithm. An improved scheme was
presented by H. Karimi et al., in [7] in 2003, where a low-
pass filter is introduced in cascade with the integrator which
improves the steady-state response and also allows for a higher
gain in-turn reducing the settling-time.

In this paper a novel scheme (also based on a locked
loop) for extraction of harmonics is presented. Its unique
feature is the use of a second-order low-pass filter (SOLF)
pre-tuned to a center frequency (w,,) for extracting the residual
fundamental and dc components to drive the integrator to the
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amplitude of the fundamental. Thus it renders the steady-state
and transient performances superior to the techniques known
so far. Moreover design considerations while choosing G and
@ optimally to achieve a better performance are discussed here.
In addition to being used for harmonic extraction it can also be
used for amplitude/frequency demodulation in communication
systems.

The paper is organised as follows: In Section III, the oper-
ation of the proposed scheme is explained. The approximate
transient analysis and linear time invariant (LTI) model devel-
opment is presented. Section IV deals with the steady-state
analysis including performance for tracking and distortion. In
Section V, the stability analysis is presented and the effects of
G and () on the steady-state and transient performances are
discussed. Design considerations are dealt with in Section VI
and simulation results are presented in Section VII.

III. THE PROPOSED VLL
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Fig. 1. Block diagram of proposed VLL

The proposed VLL (Fig. 1) has two locked loops: a phase-
locked loop for phase and frequency synchronization, and
a novel amplitude-locked loop for fundamental amplitude
determination. The input,

z;(t) = Z Cf sin(kwot + ¢r,) (1)

k=1
is a periodic waveform with no dc component. The output of
the PLL (pre-tuned to a free-running frequency of w,) which is
purely sinusoidal, is given a 90° phase shift in order to bring it
in phase with the fundamental component of the input. Thus,

zp(t) = Bpsin(wol + ¢1). 2

The essential idea is to compare the instantaneous values of
the input, z; and the output, z, (scaled version of zp) and
to adjust the scaling factor (a,) by feedback in order to
minimize the error. The integrator and the second-order low-
pass filter (SOLF) are chosen such that the above operation is
performed only on the fundamental component of x, thereby
desensitizing the loop to all harmonics. Therefore in the
steady-state, the output x, exactly locks on to the fundamental
component of z; (both phase and amplitude) and the signal 2,
is the sum of all harmonic components in z;. In other words,
a, settles to a dc (A) such that A, B is the amplitude of
the fundamental component of z;. The integrator gives the
additional advantage of zero steady-state error.

In this section, an approximate analysis of the transient
operation of the loop and subsequently, an approximate linear
time-invariant model for the proposed VLL are presented. The
SOLF used here has the standard form as given in (3).

1
H(s) = 54— 3)

s s 1
2 + Ow, +

It should be noted here that the SOLF while filtering-out
the higher order harmonics, helps in amplifying the residual
fundamental by a gain depending on the choice of (. It also
provides 90° phase lag at w,, which is required for achieving
180° phase lag for optimum negative feedback, as will be
explained in the following section.

A. Approximate Transient Analysis

It can be seen that the proposed VLL is a time-varying
system since the multiplier may be visualized as an amplifier
whose gain varies with time as xp. An exact and rigorous
analysis of such an LTI system would involve the use of
complex transforms at the expense of an intuitive feel for
its working. Therefore the authors present an approximate
analysis which gives a better insight into the working of the
loop. Assume, for simplicity, that z; is a pure sinusoid with
frequency w,, amplitude Ciu(t), and ¢; = 0. Assuming the
PLL amplitude B, as unity, the amplitude of z, is now A (¢)
the time-varying dc component in a,. The following analysis
is performed for a step change of magnitude C1, in the input
amplitude. The PLL is assumed to have attained steady-state
for the purpose of analysis.

At any instant during the transient, the error signal in the
loop is,

wp(t) = w(t) = Ao(H)zp(t)
= C1sin(wet) — Ap(t) sin(wet)
= [C1 — Ap(t)]sin(w,t). @
This error signal is a sinusoid of frequency w, which, after
passing through the integrator and low-pass filter, undergoes a
phase shift of ¢, and a gain of w—Glp, where G, is the gain

of the SOLF at w,. Therefore the %ignal a, may be expressed
as,

ap(t) = nglp[Cl — Ap(t)] sin(wot + ¢o). 5)

This signal then gets multiplied by xp, to produce a dc
component and a 2w, component in x,. Mathematically,
Gi,G
26(t) = 220y — Ap(t)] sin(wot + ¢o) sin(wot).  (6)

Wo
This can be resolved into a dc component and a 2w, compo-
nent as shown in (7).

_ GRGICL — Ay ()] [cos(¢,) — cos(2wot + o)

Wo 2

)

zo(t)

Since x, appears in zy, T contains an w, component, a dc
component as well as a 2w, component. The 2w, component



is assumed to be sufficiently attenuated by the low-pass filter
and hence has little effect on the loop operation. However, the
dc component is of prime importance since it is responsible
to drive the integrator to the requisite value. After accounting
for the inversion of x, at the subtractor, this dc component is
given by,

Xi(t) = =20y~ Ao (1) cos(n). ®

Wo

Since this signal directly feeds the integrator, it sets the
rate at which the integrator output changes and therefore
decides how fast A (t) reaches C;. Notice that, the difference
[C1 — Ap(t)] must result in a dc error component with the
same sign, so as to ensure corrective action through negative
feedback. From (8), it follows that cos(¢,) must be negative
and as large as possible (in magnitude) to achieve dc negative
feedback and minimum settling time respectively. The optimal
criterion which meets the above requirements is cos(¢,) = —1
or ¢, = £180° which leads to,

$°P" = SOLF lag|,,—.,, + integrator lag . ©)

—90° —90°

For values of w, different from w,, (within certain limits), the
loop performs suboptimally. The permissible range of w, is
discussed in Section V on stability analysis.

B. Approximate LTI model

This section describes the evolution of an approximate
time-invariant model for the proposed VLL. The effect of
variations in the fundamental input amplitude identified by
(4 (t) is considered here. The model facilitates the selection
of parameters — G and (. It takes into account only the
effect of the dc component produced by the fundamental error
signal. The effects of higher frequencies are neglected on the
assumption that they are sufficiently attenuated by the SOLF-
integrator combination.

At any instant of time, the dc component in x, is given
by (8). When w, is sufficiently close to w,, Gi;, ~ @ and
®o ~ —180°. This implies,

_ Q6

T 2w,

Xp(t) [C1(t) = Ao (1)) (10)

Taking Laplace transform of (10) we get,
QG

XE(S) - 2w,

[C1(s) — Ap(s)]- an
From Fig. 1, we also get,
G
Ap(s) = ;H(S)XE(S) (12)
Substituting for Xg(s) from (11) in (12),
G 1 G
o) = Z || Lei() - A (13)

s | s s 2w,

On further simplification,

Ay (s) 1
= 3 3 . (14)
01(8) S S S i1

w2 T Q2R T 20 (2w

IV. STEADY-STATE ANALYSIS

In the steady-state, one may assume that the amplitude of
the VLL output closely follows that of the fundamental of the
input. In other words, the signal a,, will be predominantly a
dc quantity, closely tracking C' (). Based on this assumption
the following analyses are presented.

A. Analysis for Amplitude Modulated Inputs

When the input amplitude is modulated at sufficiently low
frequencies (wy,), the output amplitude manages to follow
closely. It is assumed that a., contains only the modulating
frequency (w,) and dc. However, in reality, a,, also contains
a ripple of frequency (w, — wy,) and (w, + w.,), which when
multiplied by xp are, in turn, responsible for the sustenance
of the w,, component in a,. The linear time-invariant model
developed in the previous section exactly represents the system
for such inputs. A feedback architecture for the same model is
presented in Fig. 2 to assist designers in the application of LTI
control system techniques for optimizing its tracking abilities.
The derivation of Fig. 2 is evident from (13). However, it is
to be noted that the original system is time-varying and hence
this model cannot be used for conducting stability analysis.
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Fig. 2. LTI model of the VLL

B. Ripple factor in the Output Amplitude

Ideally in the steady-state, the signal a, must be a dc of
magnitude C;. However, in the presence of harmonics, a,
contains the dc and attenuated versions of the harmonics in
x ;. Since x, follows the fundamental in x;, x5 contains only
the sum of all harmonics present in z;. The harmonics are
attenuated by the integrator and the SOLF, leaving a ripple in
a, which may be quantified by,

Ripple Factor of a, =

s)




V. STABILITY ANALYSIS

The LTI model developed in Section III-B cannot be used
to find values of critical G, for a given (), since it takes into
account only the effect of dc caused by the 1w, component
in the loop. For larger G, the 2w, component in (7) cannot
be neglected despite attenuation by the SOLF. The surviving
2w, component gets multiplied by x to produce w, and 3w,
components. This w, component appears alongside the original
w, component (due to the error Cy(t) — A, (t)) thereby giving
the effect of an increased dc loop-gain. The exact calculations
of these higher order effects can be quite tedious and hence
the stability analysis is carried out by conducting experiments
with ) as a parameter. The result is plotted as shown Fig. 3
for w, = w, = 1007 rad/s. The stable and unstable regions
are marked and the designer has to keep this in mind while
choosing G in relation to ) or vice-versa.
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Fig. 3. Limits of stability with Q as a parameter

Further, the system is stable only for a range of w, below
the nominal value (w,,). Note that, if w, is decreased to such
an extent as to make the attenuation of the 2w, component in
(7) negligible, the effective loop gain increases by the same
process as explained earlier. However, this does not apply
when w, is increased beyond w,,. In such situations, the 2w,
component is still attenuated sufficiently in relation to w, and
hence its effect is neglected. However, higher settling times
and suboptimal responses are observed due to the fact that
|cos(¢o)] < 1 and Gy, < @Q in (8). Therefore the proposed
VLL has a lower limit on w, (for given G and () due to
stability restrictions, whereas the upper limit is dictated by the
settling time requirements.

VI. DESIGN CONSIDERATIONS

In this section, a few thumb-rules are presented for design-
ing the proposed VLL. The designer may arrive at a more
optimized VLL by fine-tuning the system through computer
simulations after following these general rules.

A. PLL Design

The PLL performance can be optimized by well established
techniques [9]. Note that the proposed VLL output will be of
the same frequency as that output by the PLL. Therefore it

is necessary to design the PLL with a free-running frequency
close to the fundamental frequency component in the input.

B. Choice of G

Note that (14) is applicable to any type of input amplitude
function C;(t). As a special case, to show the effect of
amplitude modulation, consider an input modulated by,

Cl (t) = C() + Cm sin(wmt), (16)

where Cj is the dc part of C; and C), is the amplitude of the
sinusoidal modulation with modulation frequency w,,. From
(14) the output amplitude lags by,

_1 | 2Quwp, w2 — w2,
9:tan1{ o <G2Q2—2w%ﬁb>}. 17)

A properly designed system would be able to closely follow
changes in frequency and amplitude of the fundamental input.
In other words, the phase lag in amplitude must be as small as
possible. Therefore from (17), it follows that the denominator
Wo(G?Q* — 2w?) must be as large as possible. This may be
achieved by utilizing a very large gain G. Since € is small for
such a system, we use the approximation that tan=' 6 = 6.
Therefore (17) now becomes,

2Qwm w? — w2,
0 ~ o <G2Q2—2w2 ) (18)

Further note that w, > w,,. Also, since G is chosen to be
large enough to make the denominator of (18) high,

0~ 2WoWm
G?Q
Using (19) the sensitivity of 6 with respect to G is as follows,
00  —dwowp, 1
00 _ —dwown 1 20)
oG Q G3
From (20), it follows that the sensitivity of the phase lag to
variations in G is low when G is large. Therefore in practical
systems, it is advisable to include a high gain in the loop for
quicker response, small phase lag and to increase the overall
robustness of the system.

19)

C. Choice of Q

Using (19), the sensistivity of 6 with respect to variations
in @ is calculated as follows,
00 _ 2o L @1)
8Q G2 QQ
From (21) one may conclude that sensitivity of phase lag
to variations in () is low when @ is high and that a high
value of GG already ensures low sensitivity. However, it is not
advisable to have a very large () since the system becomes
highly oscillatory and settling-time increases. Also, a higher
@ translates to a lower range of w, over which ¢, ~ —180°
(criterion for optimal performance). Therefore the quality
factor of the SOLF has a dominant effect on the settling time of
the system and also on the dynamic range of input frequency.



VII. SIMULATION RESULTS

Extensive simulation studies were conducted on the pro-
posed VLL using MATLAB® and Simulink®. The system is
designed for a specific natural frequency (i.e., 50Hz), and to
meet the requirements of, harmonic extraction and tracking
amplitude modulation. Hence various features of the system
with w,, = 1007 rad/s, @ = 2, and G = 180 were explored
for different inputs. The results are presented in what follows.

A. Response to Step Input

The simulation results of the VLL and the LTI model for
a step change of +0.5 in the fundamental input amplitude at
t = 0.2s are shown in Fig. 4 and Fig. 5. The purpose of
this test is to estimate the settling time of the system and to
compare it with the response from the LTI model. The input
for the proposed VLL is,

x(t) = 0.5[u(t) + u(t — 0.2)] sin(1007t). (22)
Hence the input to the LTI model is C1(¢) which is,
Cy(t) = 0.5[u(t) + u(t — 0.2)]. (23)

It is observed that the output settles to steady-state within 2%
error within about three cycles. As observed in Fig. 5, the
settling times are matching for the system and its LTI model.
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Fig. 4. Simulation result of the actual system to a step change in amplitude
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Fig. 5. Comparison of LTI model response and actual system output

amplitude to a step change in amplitude

B. Response to Input Amplitude Modulation

The VLL performance was also investigated for an ampli-
tude modulated sine as given in (16) with Cy =1, C,,, = 0.2
and w,,, = 4w rad/s. Hence,

x(t) = [1 + 0.2sin(4nt)] sin(1007t). (24)

Fig. 6 displays an area zoomed to around one cycle of the
modulating signal in order to clearly show the negligible phase
lag in a, and also the exactness of the LTI model. It is useful to
remember that a, is the instantaneous amplitude of the output,
to meaningfully interpret the results. The discrete Fourier series
(DFS) of the ripple in a, revealed the presence of 48 Hz and
52 Hz components as predicted in Section IV-A.

14 —Actual amplitude a

13- ---Modulating signal
== LTI model output

0.7 !
2 2.1 22 23 24 25 2.6 2.7

Time(s)
Fig. 6. Comparison of LTI model response and actual system output

amplitude to an input whose amplitude is modulated

C. Harmonics Attenuation

Studies on distortion of the output in the presence of
harmonics in the input signal are shown in Fig. 7, Fig. 8, and
Fig. 9. The applied input is a square wave of unit amplitude
and frequency 50 Hz. Fig. 7 and Fig. 8 show the VLL outputs
which are the extracted fundamental component and harmonics
of the square wave, respectively. A DFS of z; and z, are taken
and the results are presented in Fig. 9. It can be observed that
the amplitude of fundamental components of x; and x, are
perfectly matched and that the harmonic amplitudes roll off at
a rate approximately equal to 360 dB/dec. However, the VLL
does introduce a small amount of distortion at the output which
is evident by the presence of even harmonic components in the
DEFS plot, despite their absence in the input.

D. Noise Rejection

Simulation studies on the noise rejection capabilities of
the VLL were conducted. Fig. 10 shows the input, which
is a sine wave of 1007 rad/s with band-limited white noise,
and the corresponding output. For an input signal-to-noise-
and-distortion ratio (SNDR) of 7 dB, the output SNDR was
observed to be 26.3 dB.
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Fig. 7. Output for square wave input
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Fig. 8. Harmonic output for square wave input

VIII. CONCLUSIONS

A novel scheme for obtaining synchronized selective-
frequency amplitude-locking on distorted signals is presented.
An intuitive explanation of the working of the loop is pre-
sented. A comprehensive LTI model for the system is de-
veloped to facilitate the design process. It is found that the
model truly represents the actual system as far as the settling
time, steady-state response, and modulation properties are
concerned. However the stability behaviour is not captured in
the LTI model for the obvious reason that the actual scheme is
time-variant. Hence stability margin is determined by means
of experiment. Clear explanations are given for the selection
of G and Q. Performance claims are supported by simulation
results. The features of the proposed scheme are as follows:

« it has features similar to a PLL.

« the performance can be optimized by appropriate choice
of G and Q.

« the transient response is better (about three cycles), has
excellent insensitivity to harmonics, and noise rejection.

« the amplitude tracking is determined by the product of
depth of modulation and the frequency of modulation.

o the scheme is a time-variant system.

It can find applications in:

« synchronous separation of the fundamental and harmonics
in a distorted periodic waveform.
« amplitude and frequency tracking
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Fig. 9. Frequency spectrum analysis for a square wave input
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Fig. 10. Performance under noisy conditions

e noise rejection.
« amplitude demodulation/peak detection.

Hardware implementation of the proposed scheme for Active
Filtering of harmonics in power systems is underway.
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