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Abstract—Popular video coding standards like H.264 and
MPEG working on the principle of motion-compensated pre-
dictive coding demand much of the computational resources at
the encoder increasing its complexity. Such bulky encodersare
not suitable for applications like wireless low power surveillance,
multimedia sensor networks, wireless PC cameras, mobile camera
phones etc. New video coding scheme based on the principle
of distributed source coding is looked upon in this paper. This
scheme supports a low complexity encoder, at the same time
trying to achieve the rate distortion performance of conventional
video codecs. Current implementation uses LDPC codes for
syndrome coding.
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I. I NTRODUCTION

With the proliferation of various complex video applications
it is necessary to have advanced video and image compression
techniques. Popular video standards like ISO MPEG and ITU-
H.26x have been successful in accomplishing the requirements
in terms of compression efficiency and quality. However these
standards are pertinent to downlink friendly applicationslike
video telephony, video streaming, broadcasting etc. These
conventional video codecs work on the principle of motion-
compensated prediction which increase the encoder complex-
ity due to the coexistence of the decoder with the encoder. Also
motion-search algorithm makes the encoder computationally
intensive. The downlink friendly architectures belong to the
class of Broadcast model, where in high encoder complexity
is not an issue. The encoder of an Broadcast model reside at
the base-station where power consumption and computational
resources are not an issue. However this Broadcast model of
video is not suitable for uplink friendly applications likemo-
bile video cameras, wireless video sensor networks, wireless
surveillance etc which demands a low power, low complexity
encoder. These uplink friendly applications which belong to
wireless-video model demands a simple encoder since the
power and the computational resources are of primary concern
in the wireless scenario.

Based on the information theoretic bounds established in
1970’s by Slepian-Wolf [1] for distributed lossless coding
and by Wyner-Ziv [2] for lossy coding with decoder side
information, it is seen that efficient compression can also be
achieved by exploitting source statistics partially or wholly
at the decoder. Video compression schemes that build upon

these theorems are referred as distributed video coding which
befitts uplink friendly video applications. Distributed video
coding shifts the encoder complexity to the decoder making
it suitable for wireless video model.Unlike conventional video
codecs distributed coding exploits the source statistics at the
decoder alone, thus interchanging the traditional balanceof
complex encoder and simple decoder. Hence the encoder of
such a video codec is very simple, at the expense of a more
complex decoder. Such algorithms hold great promise for
new generation mobile video cameras and wireless sensor
networks. In the design of a new video coding paradigm,
issues like compression efficiency, robustness to packet losses,
encoder complexity are of prime importance in comparison
with conventional coding system. In this paper we present the
simulation results of distributed video coding with syndrome
coding as in PRISM [3], using LDPC codes for coset channel
coding [4].

II. BACKGROUND

A. Slepian-Wolf Theorum for lossless Distributed coding [1]
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Fig. 1. Compression of Correlated Sources by separate encoder but decoded
jointly

Consider two correlated information sequencesX and Y .
Encoder of each source is constrained to operate without the
knowledge of the other source while the decoder has access to
both encoded binary message streams as shown in Fig.1. The
problem that Slepian-Wolf theorem addresses is to determine
the minimum number of bits per source character required
for encoding the message stream in order to ensure accurate
reconstruction at the decoder.

Considering separate encoder and the decoder forX and
Y , the rate required isRX ≥ H(X) and RY ≥ H(Y )
whereH(X) and H(Y ) represents the entropy ofX and Y
respectively. Slepian-Wolf [1] showed that good compression
can be achieved with joint decoding but separate encoding. For
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Fig. 2. Admissible Rate Region [5]
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Fig. 3. Lossless Decoder with Side Information

doing this an admissible rate region is defined [6] as shown
in Fig.2 given by:

RX + RY ≥ H(X, Y ) (1)

RX ≥ H(X/Y ), RY ≥ H(Y ) (2)

RX ≥ H(X), RY ≥ H(Y/X) (3)

Thus Slepian-Wolf [1] showed that Eq(1) is the necessary
condition and Eq(2) or Eq(3) are the sufficient conditions
required to encode the data in case of joint decoding. With
the above result as the base, we can consider the distributed
coding with side information at the decoder as shown in the
Fig.3. LetX be the source data that is statistically dependent
to the side informationY . Side informationY is separately
encoded at a rateRY ≥ H(Y ) and is available only at the
decoder. Thus as seen from Fig.2X can be encoded at a rate
RX ≥ H(X/Y ).

B. Wyner-Ziv rate distortion theory[6,2]

Aaron Wyner and Jacob Ziv [6,2] extended Slepian-Wolf
theorem and showed that conditional Rate-MSE distortion
function for X is same whether the side information is
available only at the decoder or both at encoder and decoder;
whereX andY are statistically dependent Gaussian random
processes. LetX and Y be the samples of two random
sequences representing the source data and side informa-
tion respectively. Encoder encodesX without access to side
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Fig. 4. Lossy Decoder with Side Information

information Y as shown in Fig.4. Decoder reconstructŝX
using Y as side information. LetD = E[d(X̂, X)] is the
acceptable distortion. LetRX/Y (D) be the rate required for
the case where side information is available at the encoder also
and RWZ

X/Y (D) represent the Wyner-Ziv rate required when
encoder doesn’t have access to side information . Wyner-Ziv
proved that Wyner-Ziv rate distortion functionRWZ

X/Y (D) is
the achievable lower bound for the bitrate for a distortion D

RWZ
X/Y (D) − RX/Y (D) ≥ 0 (4)

They also showed that for Gaussian memoryless sources

RWZ
X/Y (D) − RX/Y (D) = 0 (5)

As a result source sequenceX can be considered as the sum
of arbitrarily distributed side informationY and independent
Gaussian Noise.
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Fig. 5. Lossless Decoder with Side Information

Distributed video coding is based on these two fundamental
theories, specifically works on the Wyner-Ziv coding con-
sidering a distortion measure. In such a coding system the
encoder encodes each video frame separately with respect to
the correlation statistics between itself and the side informa-
tion. The decoder decodes the frames jointly using the side
information available only at the decoder. This video paradigm
is as opposed to the conventional coding system where the
side information is available both at the encoder and decoder
as shown in Fig.5

C. Syndrome Coding [5]

Let X be a source that is to be transmitted using least av-
erage number of bits. Statistically dependent side information
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Fig. 7. Bit Planes for each coefficient Blocks

Y , such thatX = Y + N is available only at the decoder.
The encoder must therefore encodeX in the absence ofY ,
whereas the decoder jointly decodesX using Y . Distributed
source encoder compressesX in to syndromesS with respect
to a Channel codeC [7]. Decoder on receiving the syndrome
can identify the coset to whichX belongs and using side
informationY can reconstruct backX .

D. Correlation Channel and the Channel codes [4]

The performance of the channel codes is the key factor of
the distributed video coding system in both error correcting
and data compression. Turbo and LDPC codes are two ad-
vanced channel codes which have astonishing performance
near the Shannon Capacity limit. The use of LDPC codes
for syndrome coding was first suggested by Liveris in [4],
where the message passing algorithm was modified to take
syndrome information in to account. The correlation between
binary sourcesX = [X1, X2....., Xn] andY = [Y1, Y2, ..., Yn]
is modeled using a binary symmetric channel. We considerXi

andYi to be correlated according toPr[Xi 6= Yi] = p < 0.5.
The rate used forY is its entropyRY = H(Y ), therefore the
theoretical limit for lossless compression ofX is given by

nRx ≥ nH(Xi/Yi) = nH(p) = n(−plog2p−(1−p)log2(1−p))
(6)

The compressed version ofX is the syndromeS which is the
input to the channel. The sourceY is assumed to be available
at the decoder as side information. Using a linear(n, k) binary
block code, it is possible to have2n−k distinct syndromes,
each indexing a set of2k binary words of lengthn. This
compression results in mapping a sequence of n input symbols
into (n−k) syndrome symbols resulting in a compression ratio
of n : (n − k), known as the Wyners scheme [6].

III. I MPLEMENTATION

A. Encoder

The encoder block diagram is shown in the Fig.6. The video
frames are divided into blocks of 8x8 and each block is pro-
cessed one by one. Block DCT (Discrete Cosine Transform) is
applied to each 8x8 block (or 16x16) and the DCT coefficients
are zig-zag scanned so that they are arranged as an array of
coefficients in order of their importance. Then the transformed
coefficients are uniform quantized with reference to target
distortion measure and desired reconstruction quality. After
quantization a bitplane is formed for each block as shown in

Fig.7 [3]. Main idea behind distributed video coding is to code
source X assuming that the side information Y is available at
the decoder such thatX = Y + N , whereN is Gaussian
random noise. This is done in the classification step where
bitplane for each coefficient is divided into different levels of
importance. Classification step strongly rely on the correlation
noise structureN between the source blockX and the side
information blockY . Less is the correlation noise betweenX
And Y , more is the similarity and hence less number of bits
of X can be transmitted to the decoder. In order to classify the
bitplanes an offline training is done for different types of video
files without any motion search. On the basis of offline process
16 types of classes are formed, where each class considers
different number of bitplanes for entropy coding and syndrome
coding for each coefficients in the block. In the classification
process, MSE (mean square error) for each block is computed
with respect to the zero motion block in the previous frame.
Based on the MSE and the offline process appropriate class for
that particular block is chosen. As a result some of the least
significant bit planes are syndrome coded and some of the
bitplanes that can be reconstructed from side information are
totally ignored. The syndrome coding bitplanes shown in black
and gray in Fig.7 and skip planes shown in white in Fig.7.
Skip planes can be reconstructed back using side information
at the decoder and hence need not be sent to the decoder. The
important bits of each coefficient that cannot be determined
by side information has to be syndrome coded [3]. In our
implementation we code two bitplanes using coset channel
coding and the remaining syndrome bitplanes using Adaptive
Huffman coding. Among the syndrome coding bitplanes we
code the most significant bit planes using Adaptive Huffman
coding. The number of bitplanes to be syndrome coded are
directly used from class information that is hard coded. Hence
we need not send four-tuple data (run,depth,path,last) as in
PRISM [3]. Rest of the least significant bitplanes are coded
using coset channel coding. This is done by using a parity
check matrixH of a (n, k) linear channel code. Compression
is achieved by generating syndrome bits of length(n − k)
for each n bits of data. These syndrome bits are obtained by
multiplying the source bits with the parity check matrixH
such that

S = HbX .

whereS represents the syndrome bits.
H represents the parity check matrix of linear channel code.
bX represents the source bits.
These syndromes identifies the coset to which the source data
belongs to. In this implementation we have considered two
biplanes for coset coding marked gray in the Fig.7. We have
implemented this using irregular 3/4 rate LDPC coder [4].

B. Decoder

The Decoder block diagram is shown in the Fig.8. The
entropy coded bits are decoded by an entropy decoder and
the coset coded bits are passed to the LDPC decoder. In this
implementation, previous frame is considered as the side infor-
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Fig. 6. Video Encoder
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Fig. 8. Video Decoder

mation required for syndrome decoding. Once the syndrome
coded bits are recovered they identify the coset to which
Xi belongs and hence using the side informationYi we can
correctly decode the entire bits ofXi. The quantized codeword
sequence are then dequantized and inverse transformed to get
the original coefficients.

IV. SIMULATION RESULTS

TABLE 1
FILENAME : FOREMAN.QCIF,FRAME RATE=30FPS

Luma PSNR (dB) for different Methods
BitRate DVC H.263+ IntraCoder
(Mbps) Implementation Predictive Coder (Motion JPEG)

2.57 31.357 34.72 30.092
2.67 33.554 35.03 32.863
3.55 35.534 35.86 34.92

TABLE 2
FILENAME : FOOTBALL .QCIF,FRAME RATE=30FPS

Luma PSNR (dB) for different Methods
BitRate DVC H.263+ IntraCoder
(Mbps) Implementation Predictive Coder (Motion JPEG)

3.52 30.724 25.62 30.07
3.67 31.834 25.76 30.92
4.87 34.005 26.59 33.80

Video Codec is designed for a single camera scenario which
is an application to wireless network of video camera equipped
with cell phones. The video codec is simulated and tested with
a object oriented approach using C++ in gcc. The program pro-
cesses frames one by one and within each frame, block wise
processing is done. The input to the encoder is a QCIF video
file (Quarter Common Intermediate Format). Encoder allows
the storage of one previous frame. Objective performance eval-
uation of the system is done by measuring the Compression
Ratio(CR), MSE and the Peak Signal to Noise Ratio(PSNR)
between the original and the reconstructed video le. The PSNR
and CR for various video sequences is computed. These are
compared with that of H.263+ Intra and H.263+ Predictive
video codec [8]. The encoder and decoder block as shown
in Fig.6 and Fig.8 respectively are implemented and some
preliminary simulation results are presented in this paperfor
two video files Football and Foreman in QCIF resolution
with a frame rate of30 fps. The rate distortion performance
and the error resilience characteristics of the distributed video
coder is presented in this paper. As seen from the Table.1,
for the same bitrate distributed video coder has better PSNR
than DCT based intraframe coder and but is slightly inferior
to H.263+ predictive coder [8] forForeman file. As seen
from Table.2 distributed video coder has better PSNR than
DCT based intraframe coder and H.263+ predictive coder for
Football file. With some enhancements to the current coding



Fig. 9. (a) Error resilience characteristics of DVC, 4th, 10th, 20th frames are lost for football (b) Error resilience characteristics of DVC, 4th, 10th, 20th
frames are lost for foreman

scheme such as accurate modeling of correlation statistics
between the source data and the side information, proper
motion search module for side information generation etc,
better rate-distortion performance can be achieved with a low
complexity encoder model.

Error Resilience characteristics of Distributed video scheme
is as shown in Fig.9a forFootball and Fig.9b forForeman.
Effect on the quality of the reconstructed video sequence is
seen by dropping 4th, 10th, 20th frames at the decoder in our
implementation. It is seen that distributed video coder recovers
quickly. In Distributed video scheme, decoding is dependent
on the side informationY that is universal for all source data
X as long as correlation structure is satisfied.

V. CONCLUSION

In this paper we have tried PRISM[3] like implementation
using LDPC coset channel coding. By proper modelling of
correlation structure of source and the side information for
video we can achieve better compression performance with
better quality of reconstructed video sequence. However the
main aim of distributed video coding scheme is to reduce
encoder complexity to conform with ‘wireless-video ’model,
which seems to be satisfied. Distributed codec is more robust
to packet /frame loss due to the absence of prediction loop
in the encoder. In a Predictive coder accuracy of decoding is
strongly dependent on a single predictor from the encoder, loss
of which results in erroneous decoding and error propagation.
Hence Predictive coder can recover from packet or frame
loss by only some extent. The quality of the reconstructed
signal for the same CR can be improved by performing more
complex motion search. However it is seen that the current
implementation operates well in high quality (PSNR of order
of 30dB) regime. The extension to lower bit rates without any
compromise in the quality so that it is comparable with the
conventional codecs will be the next part of the work.
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