
Resizing of Images by Arbitrary Factors in the Spatial Domain
and Implementation on Blackfin BF533 Processor

Ajay A.V *, Deepti S.M *, Rajendra C.Y *, Venkatesan N.E* and Dr Sumam David *, Senior Member IEEE

* Department of Electronics & Communication Engg.,
National Institute of Technology Karnataka, Surathkal, INDIA

email: sumam@ieee.org

Keywords: Image resizing, Linear transformation, DCT,
ADSP BF533.

Abstract

A novel approach for resizing of images in the spatial domain
is presented. Image transformations are seen from a Euclidean
space perspective and expressions for image resizing are
derived. The proposed method can be used for resizing by any
arbitrary rational ratio L/M. The algorithm has been tested
for resizing between standard formats like NTSC, QVGA,
QCIF and CIF and the performance is compared with other
algorithms in terms of PSNR and computational efficiency.
Real time implementation on Analog Devices Blackfin-BF533
DSP processor shows promise.

1 Introduction

Image resizing finds application mainly in digital displays.
With the advent in digital display technology, there have
been a variety of display devices like digital TV, digital
cameras, handy cams, mobile phones etc. having variable
screen sizes [3]. Even among the same family of devices, the
size of the display unit differs. When the same data needs to
be displayed in different devices, it needs to be resized. The
constraint is more so in the case of video applications as the
processing time available is very less. Most of the present
algorithms [2, 6], deal with resizing by factors that are powers
of two or integral factors. However, certain applications
demand resizing by rational factors. Most of the present
algorithms for resizing, are implemented in the compressed
domain [2, 4, 5, 6]. This is advantageous while processing
stored images and video as they are in the compressed form.
However, in real time applications like a handy cam, the video
frames generated will be in the uncompressed format and
these algorithms are not efficient. Also, most of the algorithms
are based on resizing both the rows and columns by equal
factors. However, in certain video format conversions it maybe
required to resize the columns and rows by different factors.

Various techniques like fast computation technique for image
halving and doubling in the frequency domain [2], L/M-
Fold Image Resizing in Block-DCT Domain Using Symmetric
Convolution [6], and arbitrary resizing using DCT sub-band

approximation [4, 5] are currently available for resizing of
images in spatial and DCT domains.

In this paper, we present a computationally efficient approach
for resizing of images by rational factors in the spatial domain
based on the results of Dugad and Ahuja [2]. Our method
eliminates the need for a low pass filter during up sampling and
down sampling, thereby reducing the number of computations.
The resizing is accomplished in a single step without passing
through the steps of up sampling and down sampling. We
look at the images from an Euclidean space perspective [7]
and derive transformations for image resizing. The proposed
algorithm supports resizing by different scaling factors along
rows and columns.

Section 2 explains how images can be seen from an Euclidean
space perspective and the linear transformation required
for moving from the spatial domain to the transformed
domain. Section 3 gives a brief overview of 2-D DCT
and its matrix representation. The proposed algorithm for
resizing is presented in Sections 4 and 5. Section 6 compares
the performance of the proposed algorithm with standard
resizing techniques and implementation issues are discussed in
Section 7.

2 Images seen as a vector in Euclidean Space

A vector by definition is an ordered set of numbers. The
numbers could be either complex or real. Depending on this
we define whether the vector is defined over a real field � or
a complex field � . A collection of such vectors closed under
addition and scalar multiplication constitutes a vector space.
A vector space closed under the operation of dot product is a
Euclidean space. A gray scale image of size m � n can be
viewed as a mn-D vector defined over � . We consider Gray
scale images as the results derived hold good for color images
when extended to each of the colour planes.

A vector space of dimension mn can be described as the set
of all m � n images in this context. Let us denote this
vector space as ��� . The pixel values are constrained to lie
between 0 and 255. Image resizing can be thought of as a
linear transformation from one vector space (��� ) to another
vector space (���) where M, N, P, Q are arbitrary integers.
mn is the dimension of the original vector space and pq is the
dimension of the vector space containing the resized images.



Linear transformation can be viewed as a matrix multiplication.
Therefore, if ��� is a vector, i.e. an image in this case, in
��� and ��� is a vector in ��� then we have

��� � ����
���������	

�� (1)

where ����
�� and ����	

�� are the pre and post transformation
matrices.

Hence, if we know the transformation matrices we can convert
any vector in ��� space to the corresponding vector in ���
space. Since the transformation matrices are common for all
the vectors, they can be pre-computed and stored in memory
for conversions between standard formats.

3 Discrete Cosine Transform of Images

The DCT of a 2-D image X(m,n); 0�m�M-1, 0�n�N-1, is
given by

��� ��� �� �
��
�	


���
���

����

��

����
���

������


��

�
���� ����

��

�

��

�
���� ����

�	

�
� � � �� � �� � � � � 	 � � (2)


��� �

� �
�
� for u = 0

� otherwise
(3)

Thus for a image block of size M � N, we get M � N DCT
coefficients. We exploit the energy compaction property of
DCT transformation for resizing. Consider that we have a
M � N DCT coefficient block. Suppose that we remove the
last i rows and last j columns. We then get a DCT matrix of
size P � Q where � � � � � and � � 	 � �. If we apply
IDCT to this coefficient block, we will get an image of size
P � Q. This image is an approximation of the original image.
Similarly if we had appended i null rows and j null columns, we
would have got an image of size P� Q, where � � � � � and
� � 	��. In this case, we can view the original image to have
been an approximation of the resized larger image. However,
since we are not adding more information to the image, both
the images essentially contain the same information. We shall
use these concepts as a basis for our resizing algorithm.

4 Determination of Transformation matrices

The 2-D DCT of an image can be obtained by multiplying
the image with a pre and post matrix which are denoted by
����
�� and ����	

�� respectively. The matrices can be calculated
as follows.

����
�� ����� �

��
�


���
��

�
���� ����

��

�
(4)

����	
�� ��� �� �

��
	


���
��

�
���� ����

�	

�
(5)

Thus the DCT of an image ��� is given by

��� � ����
�� ���� �����	

�� (6)

The resizing in the DCT domain is done by multiplying ���

by a pre and post matrix respectively denoted by � ���
�� and

����	
�� .

��� � ����
�� � ��� �����	

�� (7)

These matrices for various cases can be computed as follows.

��
 �

���
��

���� � ���
���� if � � �
��� if � � �	

���
�������



if � � �

(8)

where I is the identity matrix and Z is the matrix of zeros.

Once resizing is done, we can obtain the resized image by
taking the IDCT. The matrices for obtaining the IDCT are given
by

�����
�� ��� �� � �

�
�
���
��

�
���� ����

��

�
(9)

�����	
�� ��� �� � �

�
�
���
��

�
��� � ����

��

�
(10)

Thus the resized image ��� is obtained by multiplying the
resized DCT coefficient matrix with the IDCT matrices.

��� � �����
�� ���� � �����	

�� (11)

Combining the above equations we get

��� � �����
�������

�������
�����������	

�������	
��������	

��

(12)
Comparing this equation with Equation (1) we get

����
�� � �����

�� �����
�� �����

�� (13)

����	
�� � ����	

�� �����	
�� � �����	

�� (14)

Once the required transformation is known we can calculate
the ����

�� and ����	
�� matrices and apply them to the image. The

equations required for computation of ����
�� and ����	

�� can be
calculated from the above set of equations. They are given as
follows

����
�� ��� �� �

����
���


��

�
���� ����

��

�

��

�
��� � ����

��

�

����

(15)

����	
�� ��� �� �

����
���


��

�
���� ����

��

�

��

�
��� � ����

�	

�

����

(16)
where � = ������� � and � = ����	���.



The equation for the intermediate matrix ��� obtained after
multiplying ��� with the pre matrix is given by

��� ��� �� �
����
���

����
���

����
���

����
�� ��� ����� ��� �� (17)

The final resized image matrix is given by

������ �� �

����
���

����
���

����
���

������ ���
���	
�� ��� �� (18)

It should be noted that the above transformation is not always
invertible. Invertibility exists only when � � � and � �
	 where the resized image is an interpolated version of the
original image. As there is no loss of information and thus we
can exactly reconstruct the original image by decimation using
suitable factors. However, when either � � � or � � 	
there is a loss of information and the original image cannot
be exactly reconstructed. From the point of view of linear
transformations, it can be said that the transformation is not
orthogonal in nature as the size of the vector is changing during
the transformation.

5 Decomposition and recomposition of images into spatial
blocks

The spatial correlation reduces when a image of large block
size is taken. Hence, we split the image into smaller blocks
and then apply the algorithm to each block as shown in Fig. 1.

Pseudo code
Input: M � N image
Output: P � Q image

 Compute � � !�" ���� � and � � !�" �	���

 Compute input block size ���� ���
�� � �#� $�% �� � 	#�

 Compute output block size ���� ���
�� � �#� $�% �� � �#�

 Compute the pre matrix ����
����

and post matrix ����	
����

for
conversion of input block to output block

 Multiply each input block with the obtained matrices and
arrange output blocks to obtain the resized image.

The resizing results obtained for different output sizes are as
shown in Fig. 2.

Mapping from 9x35 block to 4x16 block

320

80 blocks

15 blocks

240

QVGA Image

525

720

9

35 16

4

80 blocks

NTSC Image

15 blocks

Figure 1: Block processing of image

a

b c d

Figure 2: Image resizing (All images are scaled to 30%)
(a) Original NTSC (525� 720) image
(b) CIF (352� 288) image from QCIF
(c) QVGA (240� 320) image from NTSC
(d) QCIF (176� 144) image from QVGA

Algorithm/ Flowers Cameraman Lena Peppers
Images
Nearest 29.88 29.01 32.48 34.01
Bilinear 35.71 32.13 32.62 37.69
Bicubic 38.57 34.05 33.36 39.41

Proposed 42.31 39.11 43.38 41.47
Method

Table 1: PSNR values (dB) for conversion of images from
NTSC to QVGA



Figure 3: Original NTSC image showing SPORT transfer between two ADSP BF533 EZ kits scaled to 75 %

6 Comparison with Standard Algorithms

The performance of the proposed resizing algorithm was
compared with some of the standard algorithms through
simulation.

6.1 PSNR Calculation

The PSNR was computed similar to the down sample-up
sample PSNR method used by Mukherjee and Mitra [4] for
resizing with arbitrary factors. We first resized the image to
the required format (���) and then reconverted it back to the
original image size (� �

�� ). The mean square error (MSE)
between the original image and the image obtained after the
two resizing operations is found and the PSNR is calculated as

�&	� � ����'

�
��		��

�&(

�
%) (19)

The PSNR values obtained for NTSC to QVGA conversion
using our algorithm and standard MATLAB image resizing
function is given in Table 1. It can be observed that the
proposed method gives higher PSNR for all the images. The
subjective quality of all the images was better. The above
method of PSNR calculation is not suitable for the case � ��
and � � 	 as MSE is zero.

6.2 Computational Requirements

The resizing operation involves matrix multiplications. Let the
cost of a multiplication be * and that of an addition be +. The
computational cost 
 for resizing a �	 image to a �� image
is given by


 � �������� ��������*� �������� � �� �

������� � ���+��� (20)

The computational cost per pixel 
� is given by


� �



������
(21)

7 Implementation on ADSP Blackfin-533 EZ kit

ADSP BF-533 is an enhanced DSP processor from the Blackfin
family from Analog Devices [1]. The Blackfin processor core
architecture combines a dual MAC signal processing engine,
an orthogonal instruction set, flexible SIMD capabilities, and
multimedia features into a single instruction set architecture.
Blackfin features dynamic power management. The ability to
vary both the voltage and frequency of operation optimises the
power consumption profile to the specific task. The ADSP BF-
533 EZ-kit has one Video-In and one Video-Out port, but, at a



time, only one of these can be used. Hence, for real time video
processing two EZ-kits are required.

The NTSC image captured from the digital camera connected
to the Video-In port of EZ-kit is stored in the external memory
(SDRAM). The internal memory (32 KB) is not sufficient to
store the entire image. For real time operation, as it is not
possible to access the image pixel values at a fast data-rate from
the external memory we use the Ping-Pong DMA approach.
The internal memory is split into two banks. DMA is initialised
to load a block of the image into one bank while processing is
done on the other bank. The processed image is then sent to
the SPORT (also a DMA transfer) for serial transfer between
the two kits and image is displayed through the video port of
the second kit.

Pseudo Code

 Load image frame into external memory

 Initialize DMA transfer for Block A

 While (all the blocks are processed)

– Wait until DMA transfer is complete

– If (odd cycle)
Initialize DMA for Block B, Process on Block A
Else
Initialize DMA for Block A, Process on Block B

– Initialize DMA for transfer through SPORT

 End loop

The algorithm was tested for a single image frame grabbed
from the digital camera interfaced to the EZ-kit. The original
NTSC image showing port transfer between the EZ-kits is
given in Fig. 3 and Fig. 4 shows the resized image for NTSC
to QCIF conversion. The resizing algorithm had a code size
of 4464 bytes and was executed in 457867 cycles. The pre
and post matrices for NTSC to QCIF conversion occupied
948 bytes. The memory requirement and execution time can
be improved by assembly language code optimisations.

8 Conclusions

In this paper, we have discussed the resizing of images by
arbitrary factors in the spatial domain. The algorithm has been
implemented on Analog Devices BlackFin BF533 processor
and has been applied for standard video format conversions
such as NTSC, QVGA, QCIF and CIF. For RGB images it
needs to be applied to all the three colour planes. The algorithm
finds promise in real time image format conversions especially
in the case of video streaming as the conversion can be done in
spatial domain.

Figure 4: QCIF image obtained from NTSC image

Acknowledgments

The authors gratefully acknowledge Analog Devices
University program and Mr Kunal Singh, Mr Gurudath
N.V., and Mr Rupjyoti Sarmah of ADI Bangalore for their
support to this technical work.

References

[1] ADSP-BF533 Blackfin Processor Hardware Reference,
Analog Devices Inc. (2005)

[2] R. Dugad, N. Ahuja. “A Fast Scheme for Image Size
Change in the Compressed Domain”, IEEE Trans. on
Circuits and Sys. for Video Tech., 11, pp.461–474, (2001)

[3] K. Jack. “Video Demystified”, LLH Tech. Pub. (2001)

[4] J. Mukherjee, S. K. Mitra. “Arbitrary Resizing of Images
in DCT space”, IEE Proc.-Vis. Image Signal Process., 152,
pp.157–164, (2005).

[5] J. Mukhopadhyay, S.K.Mitra. “Resizing Of Images in the
DCT space by Arbitrary factors”, Intl. Conf. on Image
Processing ICIP,pp.2801–2804, (2004).

[6] H. W. Park, Y. S. Park, S. K. Oh. “L/M-Fold
Image Resizing in Block-DCT Domain Using Symmetric
Convolution”, IEEE Trans. on Image Processing, 12,
pp.1016–1034 (2003).

[7] G. Strang. “Linear Algebra and Its Applications”,
Thompson Books/Cole, (2005)

[8] C. Wang, H. B. Yu, M. Zheng. “A Fast Scheme for
Arbitrarily Resizing of Digital Image in the Compressed
Domain” IEEE Trans. on Consumer Electronics, 49,
pp.466–471 (2003)


